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Abstract 

 

The points scoring system of Formula 1 motor racing is a long-standing contention among fans and competitors. The 

inaugural points system was (8,6,4,3,2), that is, 8 points to the winner, 6 to second place, and so on; in 2020 the points 

system was changed to (25,18,15,12,10,8,6,4,2,1). However, it is difficult to assess statistical nulls using accumulated 

points. Here, I use Plackett-Luce likelihood to identify a ranking for the competitors, this method being amenable to 

statistical testing. I go on to assess a number of reasonable points systems objectively: in one well-defined statistical sense 

a Borda points system is optimal. 

 

Keywords 

Reified Bradley-Terry, Likelihood, Formula 1 motor racing, Points systems 

 

Introduction 

 

ormula 1 motor racing is an important and 

prestigious motor sport (Codling, 2017; Jenkins, 

2010). Season ranking is based on a points allocation 

system wherein competitors are awarded points based on 

race finishing order; points accumulate additively. The 

overall competition winner is the competitor who 

accumulates the most points after the final race. The intent 

of the points system is to incentivize competitors, stimulate 

innovation, and to create an exciting sporting spectacle: as 

such, its study is a practical application of tournament theory 

(Lazear and Rosen, 1981). 

However, in the case of Formula 1 motor racing, the 

points system is the subject of much controversy, having 

changed often since the competition’s inauguration in 1950 

when the points allocation was (8, 6, 4, 3, 2)—eight points 

to the winner, six for second place, and so on. This system 

credits only the first five finishers. As of 2020, the current 

points system of (25, 18, 15, 12, 10, 8, 6, 4, 2, 1) credits the 

first 10 (we ignore the bonus point awarded for fastest lap 

and assume a strictly monotonic decrease). Arguably these 

two systems could introduce different rational behavior 

under zero-sum assumptions: if, in a race, a driver knows he 

will place seventh under a low-risk strategy but may place 

sixth by dint of driving more aggressively, the low-risk 

strategy might be rational under the first points system 

(which does not reward the extra ranking), but not under the 

second, which does. 

Still, drivers have strong incentives to maximize their 

ranking irrespective of any points that may be awarded: 

sponsors and teams note details of drivers’ performance, and 

a great deal of personal pride may be at stake (Gay-Rees, 

2019). It is therefore reasonable to assume that each driver 

strives to maximize his rank, and this will be done here. If 

this is so, then changing the points system might change the 

competitors’ rankings (Wood, 2020) but not their behavior: 

surely a defect of using points to rank the competitors. 

Given that racing is a zero-sum game—and that points 

are monotonically decreasing— each player will try to get 

as high a rank as possible regardless of the actual points 

system used. However, there are other consistent 

interpretations. Bakhrankova (2011), for example, considers 

the possibility of inter-driver collusion, a phenomenon not 
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pursued here; and Mastromarco and Runkel (2009) suggest 

that the frequency of rule changes is driven by factors such 

as driver safety and revenue optimization. 

Points systems similar to that of Formula 1 are common 

in other racing sports; all have the common feature of 

translating ranks into points which combine additively to 

generate an overall ranking. Further, we see points systems 

used in the wider context of competitive situations such as 

the Eurovision Song Contest and many other such group 

tournaments.  Therefore, the ideas used here for analysis of 

motorsports furnish a methodology that is directly 

applicable to a broad range of competitive situations in 

which points are used to rank competitors. 

 

Bradley-Terry and generalizations for rank statistics 

The Bradley-Terry model (Bradley, 1952) assigns non-

negative strengths p1, p2,…, pn to each of  n competitors in 

such a way that the probability of  i beating j≠i in pairwise 

competition is  
𝑝𝑖

𝑝𝑖+𝑝𝑗
; it is conventional to normalize so that 

∑𝑝𝑖 = 1. Further, we use a generalization due to Luce 

(1959), in which the probability of competitor i winning in 

a field of {1, 2,…, n} is 
𝑝𝑖

𝑝1+⋯+𝑝𝑛
. Noting that there is 

information in the whole of the finishing order, and not just 

the first across the line, we can follow Plackett (1975) and 

consider the runner-up to be the winner among the 

remaining competitors, and so on down the finishing order. 

Without loss of generality, if the order of finishing were 1, 

2, 3, 4, 5, then a suitable Plackett-Luce likelihood function 

would be 

 
𝑝1

𝑝1 + 𝑝2 + 𝑝3 + 𝑝4 + 𝑝5

⋅
𝑝2

𝑝2 + 𝑝3 + 𝑝4 + 𝑝5

⋅
𝑝3

𝑝3 + 𝑝4 + 𝑝5

⋅
𝑝4

𝑝4 + 𝑝5

 

 

and this would be a forward ranking Plackett-Luce model in 

the terminology of Mollica and Tardella (2014). A slight 

generalization allows the incorporation of nonfinishers 

(DNF etc). If, say, competitors 4 and 5 did not finish, we 

would have 

 
𝑝1

𝑝1 + 𝑝2 + 𝑝3 + 𝑝4 + 𝑝5

⋅
𝑝2

𝑝2 + 𝑝3 + 𝑝4 + 𝑝5

 

 

(observe how this likelihood function, while informative 

about p4 + p5, is uninformative about p4| p4 + p4). We now 

use a technique due to Hankin (2010, 2020) and introduce 

fictional (reified) entities whose nonzero Bradley-Terry 

strength helps certain competitors or sets of competitors 

under certain conditions. The canonical example would be 

the home-ground advantage in association football. If 

players (teams) 1, 2 with strengths p1, p2 compete, and if our 

observation were a home wins and b away wins for team 1, 

and c home wins and d away wins for team 2, then a suitable 

likelihood function would be 

 

(
 𝑝1 +  𝑝𝐻

𝑝1 +  𝑝2 +  𝑝𝐻
)

𝑎

(
𝑝1 +  𝑝𝐻

𝑝1 +  𝑝2 +  𝑝𝐻
)

𝑏

(
𝑝1 +  𝑝𝐻

𝑝1 +  𝑝2 +  𝑝𝐻
)

𝑐

(
𝑝1 +  𝑝𝐻

𝑝1 +  𝑝2 +  𝑝𝐻
)

𝑑

 

  

where pH is a quantification of the beneficial home ground 

effect. Similar techniques have been used to account for the 

first-move advantage in chess, and effective coordination 

between members of doubles tennis teams; we may use a 

similar device to account for (e.g.) wet conditions in 

Formula 1. Here I analyze seasons 2016-2019 using the 

hyper2 package (Hankin, 2017) which implements the 

Plackett-Luce likelihood function with additional reified 

entities Hankin (2020). 

One component of Formula 1 motor racing is the 

starting grid. Placing on the starting grid is determined by 

time trials usually driven the day before the race itself. Pole 

position is awarded to the driver with the fastest qualifying 

time, and this confers a considerable advantage to the sitter. 

In this analysis we do not consider pole position specifically 

but attempt to make inferences about the time trials and the 

race itself in combination (alternatively, we treat grid 

placing and P-L strengths to be conditionally independent, 

given race ranking). Similarly, we treat the driver and the 

team as a single entity about which we wish to make 

inferences. 

 

Formula 1 dataset 

Taking 2017 as an example, Table 1 shows the drivers’ 

ranks. It is straightforward to translate this table into a 

Plackett-Luce likelihood function using the hyper2 package; 

for simplicity we will consider only the 11 top-ranked 

drivers (in the Plackett-Luce likelihood function, the 

performance of lower-ranked players can be weakly 

informative about higher-ranked players’ strengths. For 

example, we see that Vettel retired twice—in Singapore and 

Japan—so any player who placed in those venues will 

effectively “steal” strength from Vettel, and generally 

“give” it to Hamilton or Bottas). Although it has many 
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Table 1:  
2017 Season Results Table 

DRIVER AUSTRALIA CHINA BAHRAIN RUSSIA SPAIN MONACO … BRAZIL ABU DHABI 

Hamilton 2 1 2 4 1 7 … 4 2 

Vettel 1 2 1 2 2 1 … 1 3 

Bottas 3 6 3 1 Ret 4 … 2 1 

Räikkönen 4 5 4 3 Ret 2 … 3 4 

Ricciardo Ret 4 5 Ret 3 3 … 6 Ret 

… … … … … … … … … … 

Hartley 0 0 0 0 0 0 … 0 15 

Button 0 0 0 0 0 Ret … 0 0 

Resta 0 0 0 0 0 0 … 0 0 

 

Each row is a driver and each column (after the first) a venue. We see that Hamilton, the first row, came second in Australia, first in 
China, second in Bahrain, fourth in Russia, and so on (Hartley, Button, and Resta placed last). In the first column, we see the result 
from Australia in which Hamilton came second, Vettel first, Bottas third, and so on. Here, “Ret” means “retired” and a zero entry 
means “did not finish”. 

 

terms, the overall likelihood expression for the 2017 season 

is of the general form  

 

 

 

 

Implications for Future Actions 

 

 

Finding the maximum likelihood estimate for the 

players’ strengths is straightforward numerically. The 

hyper2 package includes a suite of numerical optimization 

routines, and because they have access to derivatives, 

convergence is rapid. A graphical diagram of the strengths 

is given in Figure 1. We see that in 2016 the driver with the 

largest estimated strength was Rosberg at about 30%, and in 

years 2017-2019 was Hamilton at about 29%, 37%, and 42% 

respectively. As an illustration of the value of likelihood 

methods (as opposed to points-based methods), a likelihood 

ratio test [samep.test(), supplied with the hyper2 package] 

rejects the null that Hamilton and Vettel have the same 

strength in 2018 (H0: pHam = pVet) with a likelihood ratio of 

e2.76 ≃ 15.8 , corresponding by Wilks’s theorem to an 

asymptotic p-value of about 0.02. We may also use the 

reified entity concept to test the null hypothesis that 

Hamilton’s strength was unchanged from 2016, where 

Rosberg had the highest estimated strength, to 2017-2019, 

where Hamilton did; we fail to reject this null. 

 

Likelihood scoring vs points scoring 

Applying the current points system, for example, to 

the 2017 results table we would rank the drivers as 

follows: 
 

Hamilton > Vettel > Bottas > Räikkönen > Ricciardo > 

Verstappen >Peréz > Ocon > Sainz > Hülkenberg > Massa 

(this happens to be identical to the ranking after the extra 

point was awarded for fastest lap). However, if we were 

to adopt a Zipfian points system of (1,
1

2
,

1

3
, … ) we 

would have 

 

Hamilton > Vettel > Bottas > Ricciardo > Verstappen > 

Räikkönen > Peréz > Ocon > Massa> Sainz > Hülkenberg 

 

[note that “Zipf’s law” refers to the probability mass 

function (Zipf 1949); here I am using it simply as a 

monotonically decreasing sequence]. Thus, these two 

systems agree on the first three places but fourth is 

awarded to Räikkönen under the current F1 system and 

Ricciardo under Zipf. Compare the likelihood ranking: 

 

Hamilton > Vettel > Bottas > Räikkönen  > Ocon > 

Ricciardo > Verstappen > Peréz > Massa > Sainz > 

Hülkenberg 

 

So, for 2017 at least, we see that the current points 

system agrees with likelihood ranking for the top four 

places, while a Zipfian system agrees to three. We can plot 

one ranking against the other, shown in Figure 2. Note that 

the historically correct points awarded to the drivers differs 

from that calculated here. That is for two reasons: firstly, 

“fastest lap” points are not included here, and also the 

truncation of the order table to the first 11 drivers can  



Formula 1 Points 

 
 

 

  

  
 
Figure 1:  
Maximum likelihood estimates of the strengths of the top-ranked 11 drivers in Formula 1 motor racing, seasons 2016-
2019 

increase the rank of a driver if non-first-11 drivers are 

placed. 

We thus see a comparison between two ordering 

systems. Taking 2017 as an example, drivers Hamilton and 

Vettel are respectively first and second according to both 

ranking procedures; but Räikkönen and Bottas are third and 

fourth, and fourth and third, according to points and 

likelihood respectively. We define the degree of agreement 

between the two ranking systems as the maximal value of r 

such that places 1, 2,…, r all match. Thus, from Figure 2, the 

degree of agreement between likelihood ranking and points 

ranking for the years 2016-2019 would be 11, 1, 2, 2 

respectively. 

However, the points system used is essentially arbitrary. 

We could use, for example, a Zipfian points system to rank 

the drivers: award one point to the winner, half a point to 

second place, one third of a point to third, and so on; see 

Figure 3 in which we see generally poorer agreement 

between points-based ranks and likelihood-based ranks, 

with a degree of agreement of 0,1,2,2 for the years 2016-

2019 respectively. This might be an indication that using a 

Zipfian points allocation is objectively worse than the 

current points system. There are a number of plausible 

points systems that might be used: 

 

• The current Formula 1 system (25, 18, 15, 12, 

10, 8, 6, 4, 2, 1) 

• The inaugural Formula 1 system (8, 6, 4, 3, 2) 

• Zipfian    

• Borda (n, n−1, n−2,..., 3, 2, 1, 0) 
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Figure 2:  
Ordering of the top-ranked 11 drivers in Formula 1, seasons 2016-2019.  Horizontal axis gives official (points-based) 
order, and the vertical axis gives the likelihood order.  Thus, taking 2017 as an example, the points-based ordering would 
be Hamilton first, then Bottas, then Verstappen; while the likelihood ordering is (reading vertically) Hamilton, 
Verstappen, Bottas. 

• Halving system:   

• A “winner takes all” system (1, 0, 0, 0,…)  

 

We note that some of these may be generalized. We might 

consider a more general Borda-like points system (r, r – 1, r 

– 2,…, 3, 2, 1, 0) for fixed integer r with 0 < r < n (Emerson, 

2007); the halving system can be generalized to a geometric 

distribution; and the “winner takes all” system can be 

replaced by giving equal points to the top r competitors  (1, 

1,…,1, 0, 0,…) where there are r 1’s and (n-r) 0’s, for some 

integer r<n. 

It is straightforward to calculate the degree of agreement 

for the observed rank table for years 2016-2019, shown in  
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Table 2:  

Points (P-) and likelihood (L-) based rankings for the drivers’ championship, Formula 1 seasons 2016-2019.  Bold font 
indicates agreement. 

 
2016 2017 2018 2019 

Rank P L P L P L P L 

1 Rosberg Rosberg Hamilton Hamilton Hamilton Hamilton Hamilton Hamilton 

2 Hamilton Hamilton Vettel Bottas Vettel Vettel Bottas Bottas 

3 Ricciardo Ricciardo Bottas Vettel Verstappen Bottas Verstappen Leclerc 

4 Vettel Vettel Raikkonen Raikkonen Raikkonen Raikkonen Leclerc Verstappen 

5 Verstappen Verstappen Ricciardo Perez Bottas Verstappen Vettel Vettel 

 

  

  

  

 

Figure 3:  
Points ranking calculated by a Zipfian system.  Note the generally poorer agreement between the two ranking systems. 
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Table 2. It is clear that there is no points system that is the 

best for all four years. However, observing that both the 

likelihood ranking and the points ranking are random 

variables in this paradigm suggests a method whereby we 

can objectively assess a given points system. Using  

sampling techniques, we can repeatedly generate an order 

table in silico, using estimated driver strengths from the 

observed tables. For each of, say, 1000 such synthetic tables, 

calculate drivers’ maximum likelihood Plackett strengths, 

and also their points awarded according to any given points 

system. We then compare rankings generated by the Plackett 

strengths and the points awarded and note the degree of 

agreement between the two, as measured by the number of 

rankings correctly predicted. This furnishes an objective 

assessment of the points system used. 

 

Numerical results 

We now assess the six points systems using the 

methodology outlined above, using 1000 in silico trials. For 

each of the six points systems, each of the 1000 trials results 

in a single non-negative integer: the degree of agreement 

between the Plackett-Luce ranking and the rankings 

according to the points system considered. There are three 

measures that might be used to assess the distribution of 

degree of agreement: (1), the mean degree of agreement d; 

(2), the probability of correctly predicting the winner, 

Prob(d ≥ 1); and (3), the probability of correctly predicting 

the complete order statistic Prob(D = n). These summaries 

are shown for each of the six points systems in Figures 4, 5 

and 6 respectively. 

We see that the Borda points system (n, n-1, n-2,…, 3, 

2, 1, 0) gives the highest mean number of places, and also 

the highest probability of correctly predicting the winner. 

However, the probability of predicting the complete order 

statistic is maximized using the winner takes all system (1, 

0, 0,…, 0). 

To summarize, the winner takes all system is the 

optimum points system in the following sense: simulated 

race results have a higher probability of matching the 

likelihood-based complete order statistic when using a 

winner takes all points system than when using any other 

points system.  

 

Conclusions 

Many competitive situations involve ranking the 

participants and one way of doing this is to assign points for 

the winner, second place, third place, etc. The overall 

ranking for a sequence of observations is decided on the 

basis of accumulated points. Because changing the points 

system can change participants’ overall ranking but does not 

affect their behavior, accumulated points should not be used 

to make inferences about participants’ skills. Maximum 

likelihood estimation of Plackett-Luce strengths furnishes a 

ranking system that does not suffer from the arbitrariness 

of a points system. Further, this allows one to conduct 

statistical tests on a range of interesting nulls in the context 

of an established suite of software. 

 
 

Figure 4:  
Simulated Formula 1 races, seasons 2016-2019: mean 
number of agreeing places for each of six points systems 
when compared with a Plackett-Luce strength ordering 

 

 

 
 

Figure 5: 

Simulated Formula 1 races, seasons 2016-2019: probability 

of identifying the Plackett-Luce winner for each of six points 

systems 
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Figure 6:  
Simulated Formula 1 races, seasons 2016-2019: probability 
of complete agreement between Plackett-Luce ranks and 
likelihood calculated by each of six points systems 

 

The points system used in Formula 1 motor racing is a 

source of lively debate from many perspectives, with 

changes being controversial. By treating total points scored 

as a random variable, it is possible to compare different 

point allocation schemes against objective Plackett-Luce 

ranks. Of the six points systems considered here, a Borda 

system or a winner-takes-all-system appear to be closest to 

objective Plackett-Luce, depending on the exact definition 

of “closest”. The analysis could help to better understand the 

impact of different points systems on the overall ranking of 

drivers and indeed teams. This could be particularly useful 

for team managers, who may be looking to optimize their 

team strategy based on the points system in use. 

Additionally, the analysis could help the motor racing 

community to evaluate the fairness of different points 

systems.  This could be particularly important for race 

organizers or governing bodies, who may be seeking to 

design a points system that is as fair and objective as 

possible.  The analysis could be used to inform debates or 

discussions around potential changes to the Formula 1 points 

system. Practitioners might be able to make more informed 

decisions on strategy; and to use the techniques presented 

here to guide decision-making. 
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